Math 4550 - Homework # 2 - Subgroups

Part 1 - Computations

- (a) Compute the order of every element of Z₄.
 (b) Do the same for Z₅.
- 2. Compute the order of every element in U_6 .
- 3. Compute the order of every element in D_6 .
- 4. In \mathbb{Z}_8 calculate these cyclic subgroups: $\langle \overline{2} \rangle$ and $\langle \overline{4} \rangle$ and $\langle \overline{5} \rangle$.
- 5. Calculate the cyclic subgroup $\langle e^{2\pi i/4} \rangle$ in U_8 . Draw a picture of U_8 and circle the subgroup.
- 6. Describe the elements of $\langle 3 \rangle$ in \mathbb{R}^* .

7. Consider the group
$$GL(2, \mathbb{R})$$
 and $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

- (a) Show that S is in $GL(2, \mathbb{R})$.
- (b) Show that S has order 4 and list the elements of $\langle S \rangle$.

8. Consider $GL(2,\mathbb{R})$ and $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Describe the elements of $\langle T \rangle$.

Part 2 - Proofs

- 9. Show that $H = \{1, s, sr, sr^2\}$ is not a subgroup of D_6 .
- 10. Prove that $H = \{1, r^2, s, sr^2\}$ is a subgroup of D_8 .
- 11. Show that

$$N = \left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \middle| x \in \mathbb{R} \right\}$$

is a subgroup of $GL(2,\mathbb{R})$

12. Show that

$$H = \{2x + 3y \mid x, y \in \mathbb{Z}\}$$

is a subgroup of \mathbb{Z} .

13. Let G be an abelian group. Let $H = \{x \in G \mid x^2 = e\}$. Prove that H is a subgroup of G.

- 14. Let G be a group. Let H and K be subgroups of G. Prove that $H \cap K$ is a subgroup of G.
- 15. Let G be an abelian group. Let H and K be subgroups of G. Prove that

$$HK = \{hk \mid h \in H \text{ and } k \in K\}$$

is a subgroup of G.

16. Let G be a group. The center of G is

$$Z(G) = \{ x \in G \mid xy = yx \text{ for all } y \in G \}$$

Prove that Z(G) is a subgroup of G.